Deep-Vein Thrombosis of the Upper Extremities

Nils Kucher, M.D.

A 58-year-old woman presents with a 3-day history of pain, heaviness, and functional impairment in her left arm. She has received chemotherapy for ovarian cancer through an implanted port and catheter (Port-a-Cath) on the left side. Physical examination reveals a swollen and erythematous left arm and visible venous collaterals at the neck, shoulder, and chest. Compression ultrasonography reveals a patent left distal subclavian vein, but there is an abnormal Doppler-flow pattern suggestive of a more proximal thrombosis. How should this case be further evaluated and managed?

The Clinical Problem

Approximately 10% of all cases of deep-vein thrombosis involve the upper extremities, resulting in an annual incidence of 0.4 to 1 case per 10,000 people. Cases have become more common because of the increased use of central venous catheters and of cardiac pacemakers and defibrillators. Axillary subclavian veins are often involved, and secondary forms are more common than primary forms (Table 1). As compared with patients who have thrombosis of a lower extremity, patients with deep-vein thrombosis of an upper extremity are typically younger, leaner, more likely to have a diagnosis of cancer, and less likely to have acquired or hereditary thrombophilia.

In patients with primary deep-vein thrombosis of an upper extremity, repetitive microtrauma to the subclavian vein and its surrounding structures, the result of anatomical abnormalities within the costoclavicular junction, may cause inflammation, venous intima hyperplasia, and fibrosis, all of which characterize the venous thoracic outlet syndrome. Approximately two thirds of patients with primary deep-vein thrombosis of an upper extremity, most of whom are young and male, report strenuous activity involving force or abduction of the dominant arm before the development of thrombosis, known as the Paget–Schroetter syndrome.

Complications of deep-vein thrombosis, which are less common in the upper extremities than in the lower extremities, include pulmonary embolism (6% for upper extremities vs. 15 to 32% for lower extremities), recurrence at 12 months (2 to 5% for upper extremities vs. 10% for lower extremities), and the post-thrombotic syndrome (5% for upper extremities vs. up to 56% for lower extremities). Thrombosis of the axillary subclavian veins (as compared with thrombosis at other locations) and residual thrombosis at 6 months are associated with an increased risk of the post-thrombotic syndrome; the risk is lower for catheter-associated thrombosis. In a prospective study of 512 patients with deep-vein thrombosis of an upper extremity, 38% of whom had cancer, the 3-month
mortality rate was 11%, and only 1 death was attributed to pulmonary embolism.2

STRATEGIES AND EVIDENCE

EVALUATION

Symptoms of deep-vein thrombosis of an upper extremity include discomfort, pain, paresthesias, and weakness in the arm. Swelling, edema, discoloration, and visible venous collaterals are typical signs. The superior vena cava syndrome is manifested as facial swelling, headache, nausea, and dyspnea and is usually caused by caval tumor infiltration. Routine screening has revealed thrombosis in up to two thirds of patients with central venous catheters26; the majority of patients with catheter-associated thrombosis27 or with venous obstructions caused by pacemaker leads28 have no suggestive symptoms or signs. Patient characteristics, the type of treatment administered, and factors related to catheter use affect the risk of catheter-associated thrombosis (Table 1).

One study investigated the use of a pretest clinical prediction score for the diagnosis of deep-vein thrombosis of an upper extremity. Catheter or pacemaker use, pain, and edema each added 1 point to a patient’s score, and a likelihood of an alternative diagnosis subtracted 1 point.29 In the validation sample of 214 patients, deep-vein thrombosis of an upper extremity was found in 13% of patients with a score of 0 or less, 38%, of patients with a score of 1, and 69% of patients with a score of 2 or more.

A negative result on a D-dimer test is an accurate means of ruling out thrombosis of the lower extremities when the clinical pretest probability is low or intermediate, but a D-dimer test cannot be recommended for use in screening

Table 1. Pathogenesis of Deep-Vein Thrombosis of an Upper Extremity.

<table>
<thead>
<tr>
<th>Type of Deep-Vein Thrombosis</th>
<th>Mechanisms or Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary (20% of cases)</td>
<td></td>
</tr>
<tr>
<td>Venous thoracic outlet syndrome</td>
<td>Compression of the subclavian vein resulting from abnormalities of one or more structures at the costoclavicular junction: first rib, clavicle, subclavius muscle, costoclavicular ligament, or anterior scalene muscle</td>
</tr>
<tr>
<td>Effort-related thrombosis (Paget–Schroetter syndrome)</td>
<td>Microtrauma to the subclavian vein from repetitive arm movements during overhead activities (e.g., painting or doing car repairs) or vigorous exercise (e.g., pitching a baseball, playing badminton, swimming, lifting weights, rowing, or wrestling); abnormalities of the costoclavicular junction may be present</td>
</tr>
<tr>
<td>Idiopathic</td>
<td>No relation to the thoracic outlet syndrome or to exertion; hereditary or acquired thrombophilia may be present</td>
</tr>
<tr>
<td>Secondary (80% of cases)</td>
<td></td>
</tr>
<tr>
<td>Catheter-associated thrombosis (indwelling central venous catheter, pacemaker, or defibrillator leads)</td>
<td>Patient-related risk factors: ovarian cancer (vs. other types of cancer),5 lung adenocarcinoma (vs. squamous-cell carcinoma of the lung, head, neck, or esophagus),6 metastatic (vs. localized) cancer,7 history of thrombosis8</td>
</tr>
<tr>
<td>Treatment-related risk factors: radiation therapy of the chest,7 bolus (vs. diluted) chemotherapy infusions,9 parenteral nutrition10</td>
<td></td>
</tr>
<tr>
<td>Catheter-related risk factors: malplacement of catheter tip (not at atrio caval junction),7 left-sided catheter placement,7 large number of catheter lumens,11 several attempts to place catheter,7 prior central venous catheterization,9 open-ended (vs. closed) catheter,12 catheter infection,13 polyvinylchloride or polyethylene (vs. silicone or polyurethane) catheter material14</td>
<td></td>
</tr>
<tr>
<td>Cancer-associated thrombosis</td>
<td>Cancer-related coagulation abnormalities, chemotherapy-induced coagulation abnormalities, vein compression or infiltration from mediastinal tumor mass</td>
</tr>
<tr>
<td>Surgery or trauma of the arm or shoulder</td>
<td>Injury or compression of arm veins, stasis from immobilization or plaster cast</td>
</tr>
<tr>
<td>Pregnancy, use of oral contraceptives, ovarian hyperstimulation syndrome</td>
<td>Hormone-induced coagulation abnormalities; hereditary or acquired thrombophilia may increase risk</td>
</tr>
</tbody>
</table>
patients with suspected deep-vein thrombosis of an upper extremity, since many of these patients have coexisting conditions that are associated with an elevated d-dimer level. For example, in a study of 52 patients with suspected deep-vein thrombosis of an upper extremity (23 of whom had a diagnosis of cancer and 18 of whom had an implanted catheter), d-dimer levels were measured with the use of an enzyme-linked immunosorbent assay (VIDAS, BioMérieux). The cutoff value of 500 µg per liter had a sensitivity of 100% but a specificity of only 14% for diagnosis; only 5 patients (10%) had d-dimer levels below this cutoff point.30

Compression Ultrasonography and Duplex Ultrasonography

Compression ultrasonography, which relies on the finding that a thrombosed vein cannot be compressed, is the clinical standard for diagnosing thrombosis of a lower extremity and is also the preferred imaging test for patients with suspected deep-vein thrombosis of an upper extremity. However, the proximal subclavian and brachiocephalic veins are difficult to visualize because of overlying bony structures. In a review of nine studies, compression ultrasonography had a sensitivity of 97% (95% confidence interval [CI], 90 to 100%) and a specificity of 96% (95% CI, 87 to 100%) for deep-vein thrombosis of an upper extremity.31 For cases in which distal arm veins appear patent and thrombosis of the proximal arm veins (subclavian or brachiocephalic) is suspected, duplex ultrasonography may reveal an abnormal Doppler pattern with reduced variability or no variability in flow velocity during a Valsalva maneuver. However, in one study, the addition of color Doppler to compression ultrasonography did not improve diagnostic accuracy as compared with the use of compression ultrasonography alone. Additional testing may be required if an abnormal Doppler signal is present.31 Whereas serial ultrasonography has been recommended when deep-vein thrombosis of a lower extremity is suspected, data are lacking to support this approach for the upper extremities.

Conventional Phlebography and Other Imaging Tests

Although ultrasonography has virtually replaced conventional phlebography in diagnosing deep-vein thrombosis of an upper extremity, the latter is occasionally performed in patients with indeterminate ultrasonographic results or before catheter-directed thrombolysis or surgical decompression of the venous thoracic outlet (Fig. 1). Positional phlebography is performed during arm abduction and is useful for diagnosing residual vein stenosis within the costoclavicular junction after an episode of deep-vein thrombosis. Disadvantages of phlebography include the use of contrast agents, radiation exposure similar to that of computed tomography (CT), and difficulties in accessing peripheral arm veins. Severe renal dysfunction and allergy to contrast agents containing iodine are relative contraindications.

Data on the diagnostic accuracy of CT angiography32 or magnetic resonance angiography33 are limited. Either test may be useful for imaging the proximal arm veins if the findings on ultrasonography are indeterminate and for diagnosing suspected concomitant conditions, including neoplasm or associated adenopathy and abnormalities at the venous thoracic outlet.

MANAGEMENT

In patients with catheter-associated thrombosis, routine catheter removal is not recommended. In deciding whether to remove the catheter, several factors should be considered, including the need for further intravenous administration of medications or blood sampling, expected difficulties in obtaining venous access, and the patient’s preference. Removal is generally warranted when there is catheter malfunction or infection or a contraindication to anticoagulation therapy, when there are persistent symptoms or signs of deep-vein thrombosis of an upper extremity during initial anticoagulation therapy, or when the catheter is no longer needed. For cases in which removal is considered appropriate, data are lacking on the optimal timing (e.g., immediately vs. 3 to 5 days after initiation of anticoagulation therapy). In a cohort study of 74 patients with cancer and symptomatic catheter-associated thrombosis (77% of whom had peripherally inserted central catheters, 19% implanted ports, and 4% Hickman catheters), the catheters were left in place while the patients received anticoagulation therapy.34 At 3 months, 57% of the patients had functional catheters, and 43% had had the catheters removed for reasons other than thrombosis or...
catheter failure; none had recurrence or progression of thrombosis.

The aims of treatment are to alleviate the symptoms of deep-vein thrombosis of an upper extremity and to prevent thrombus progression, early recurrence, pulmonary embolism, and the post-thrombotic syndrome. Strategies include anticoagulation therapy, thrombolysis, mechanical catheter interventions, and surgical procedures.

Anticoagulation Therapy

Randomized, controlled trials of unfractionated heparin or low-molecular-weight heparin have not been performed in patients with deep-vein thrombosis of an upper extremity; data from trials involving patients with thrombosis of a lower extremity are used to guide management. In a meta-analysis of 22 trials (8867 patients) comparing low-molecular-weight heparin with unfractionated heparin in the treatment of thrombosis in a lower extremity, low-molecular-weight heparin was associated with a lower rate of recurrent venous thromboembolism at 6 months (3.6% vs. 5.4%; odds ratio, 0.68; 95% CI, 0.55 to 0.84) and a lower rate of death (4.5% vs. 6.0%; odds ratio, 0.76; 95% CI, 0.62 to 0.92); during the initial treatment period, low-molecular-weight heparin also resulted in a lower rate of major bleeding (1.2% vs. 2.0%; odds ratio, 0.57; 95% CI, 0.39 to 0.83). In four observational studies involving a total of 209 patients with deep-vein thrombosis of an upper extremity, who were mainly treated with low-molecular-weight heparin, the rate of recurrence was 1.9%, and there were no cases of pulmonary embolism during follow-up; rates of major bleeding were 2 to 4%. Initial anticoagulation treatment thus usually involves low-molecular-weight heparin (Fig. 2); unfractionated heparin is preferred in patients with severe renal dysfunction. The effects of once-daily versus twice-daily dosing have not been compared in patients with deep-vein thrombosis of an upper extremity.

Data from controlled studies of the optimal duration of anticoagulation treatment in patients with deep-vein thrombosis of an upper extremity are also unavailable. On the basis of cohort studies showing low recurrence rates with the use of vitamin K antagonists for 3 to 6 months, this duration is generally recommended for all types of anticoagulation therapy in patients with deep-vein thrombosis of an upper extremity, including those in whom a central venous catheter has been removed. Vitamin K antagonists are generally used except in patients with cancer, for whom low-molecular-weight heparin is preferred. In the absence of compelling data to support their use, mechanical therapies, including compression bandages or sleeves, are not routinely recommended.

Thrombolysis

Catheter-directed thrombolysis should be considered in patients with deep-vein thrombosis of an upper extremity of recent onset who present with extensive swelling and functional impairment of the arm and who are at low risk for bleeding complications. As with anticoagulation therapy, evidence to support thrombolysis is mainly derived from patients with thrombosis of a lower extremity. In a multicenter registry of 473 such patients, catheter-directed thrombolysis was most effica-
In a randomized trial comparing catheter-directed thrombolysis with anticoagulation alone in 35 patients with iliofemoral thrombosis, thrombolysis resulted in a higher frequency of venous patency (72% vs. 12%) and a lower frequency of venous reflux (11% vs. 41%).

Observational data from patients with thrombosis of a lower extremity have pointed to higher rates of primary patency and lower rates of bleeding complications or the post-thrombotic syndrome among patients treated with catheter-directed thrombolysis as compared with those treated with systemic thrombolysis.

Limited data are available regarding the outcome of thrombolysis in patients with deep-vein thrombosis of an upper extremity. Among 30 such patients who underwent catheter-directed thrombolysis with recombinant-tissue plasminogen activator (median total dose, 52 mg), the rate of partial or complete recanalization was 97%, the rate of major bleeding complications was 9%, and the rate of mild post-thrombotic syndrome was 21%.

Although the recanalization rate appears to be satisfactory, it remains unclear whether thrombolysis as compared with anticoagulation alone reduces the risk of recur-

Figure 2. Guidelines for the Management of Deep-Vein Thrombosis (DVT) of an Upper Extremity.

Removal of the catheter is warranted if there is catheter malfunction or infection, if anticoagulation therapy is contraindicated or has failed, or if the catheter is no longer needed. Grade I recommendations are strong and apply to most patients in most circumstances. Grade II recommendations are suggestions; the most appropriate action may differ, depending on the individual case. Class C indicates low-quality evidence (i.e., data from cohort studies or case series or from controlled studies with serious limitations). SVC denotes superior vena cava. Recommendations are adapted from the 2008 consensus guidelines of the American College of Chest Physicians.39
rent thrombosis, pulmonary embolism, or the post-thrombotic syndrome among patients with deep-vein thrombosis of an upper extremity.

Mechanical Catheter Interventions

Mechanical catheter interventions (aspiration, fragmentation, thrombectomy, balloon angioplasty, or stenting) should be considered only in patients who have persistent, severe symptoms or signs of deep-vein thrombosis after anticoagulant therapy or thrombolysis and only when sufficient expertise and resources are available. In a case series of 49 patients, venous stents provided a temporary clinical benefit in most patients, but 62% required repeat intervention at 2 years. Stents should not be used to treat residual subclavian-vein stenosis within the costoclavicular junction because they are associated with unacceptably high rates of stent deformation, stent fractures, and recurrent thrombosis. The major risks of catheter interventions include recurrent thrombosis, pulmonary embolism, and bleeding complications.

Pharmacomechanical thrombolysis refers to the combination of catheter-directed thrombolysis and mechanical intervention. In an observational study of 93 patients with thrombosis in a lower extremity, pharmacomechanical thrombolysis and catheter-directed thrombolysis had similar efficacy, but the former was associated with a shorter duration of thrombolytic administration, a shorter hospital stay, and lower costs. More data are needed to assess the benefits and risks of this approach.

Surgical Procedures

As is the case with mechanical catheter interventions, surgical procedures should be reserved for patients who have persistent, severe manifestations of deep-vein thrombosis despite the administration of anticoagulant or thrombolytic therapy and should be limited to centers with relevant expertise. Data from randomized trials are lacking to assess the benefits and risks of surgical treatment for deep-vein thrombosis of an upper extremity (e.g., thrombectomy, venoplasty, venous bypass, or decompression at the venous thoracic outlet). However, a randomized trial that compared surgical thrombectomy with anticoagulation alone in patients with iliopelmal thrombosis showed that at 6 months, the surgical group had a higher rate of venous patency (76% vs. 35%) and a lower rate of the post-thrombotic syndrome (7% vs. 42%).

Adequate surgical decompression of the venous thoracic outlet requires resection of the first rib by the transaxillary route or the use of supraclavicular or infraclavicular incisions. Some surgeons also advocate resection of the costoclavicular ligament, anterior scalenectomy, and venolysis. In two case series with a total of 240 patients, venous patency rates after decompression of the thoracic outlet were reported as excellent, and up to 85% of patients had no evidence of the post-thrombotic syndrome at follow-up. Postoperative complications include hemopneumothorax, injury of the long thoracic nerve or the phrenic nerve, wound hematoma requiring reoperation, and recurrent subclavian thrombosis.

Staged Multidisciplinary Management

Some institutions have introduced a multidisciplinary approach to the treatment of patients with deep-vein thrombosis of an upper extremity, wherein patients with no symptoms or mild symptoms are treated with anticoagulation alone and patients with extensive swelling or functional impairment of the arm are generally treated with both catheter-directed thrombolysis and anticoagulation therapy. Patients are reassessed between 1 and 3 months after diagnosis of deep-vein thrombosis, and surgical decompression of the thoracic outlet with optional percutaneous balloon angioplasty is usually performed if the post-thrombotic syndrome is present (as evidenced by symptoms such as tenderness, pain, heaviness, or weakness or by signs such as edema, venous collaterals, erythema, or skin induration) and if residual vein stenosis at the venous thoracic outlet has been confirmed with the use of positional phlebography. In a study of 50 patients with primary deep-vein thrombosis of an upper extremity who received multidisciplinary care (of whom 46% underwent catheter-directed thrombolysis, 72% subsequent surgical decompression of the venous thoracic outlet, and 18% postoperative balloon angioplasty of residual vein stenosis), there were no cases of recurrent thrombosis, and 80% of patients had no evidence of the post-thrombotic syndrome at a 3-year follow-up assessment. A case series of 22 patients showed similar outcomes with this strategy.
Prevention

There is currently no convincing evidence to support thromboprophylaxis in patients with central venous catheters, and routine pharmacologic prophylaxis is therefore not recommended. A meta-analysis of seven randomized trials involving patients with cancer and central venous catheters showed nonsignificant reductions in symptomatic thrombosis with the use of low-molecular-weight heparin or unfractionated heparin as compared with placebo in four trials (hazard ratio, 0.43; 95% CI, 0.18 to 1.16) or with the use of minidose warfarin (in most cases 1 mg daily) as compared with placebo in three trials (hazard ratio, 0.62; 95% CI, 0.30 to 1.27). However, an analysis that included all seven trials showed a significantly reduced risk of symptomatic thrombosis with the use of any anticoagulant (hazard ratio, 0.56; 95% CI, 0.34 to 0.92). In this overall analysis, anticoagulation did not significantly affect the risk of major bleeding complications (hazard ratio, 1.83; 95% CI, 0.34 to 9.87) or death (hazard ratio, 0.74; 95% CI, 0.40 to 1.36).

Data are lacking to support the use of superior vena cava (SVC) filters for the prevention of pulmonary embolism in patients with deep-vein thrombosis of an upper extremity. In a review that included 209 patients treated with SVC filters, 3.8% had severe complications, including cardiac tamponade (4 patients), aortic perforation (2 patients), and recurrent pneumothorax (1 patient). Consideration of SVC filter placement should generally be limited to patients with a contraindication to anticoagulation therapy and to those with thrombus progression or symptomatic pulmonary embolism despite adequate treatment with anticoagulants.

Areas of Uncertainty

There is no validated diagnostic algorithm for deep-vein thrombosis of an upper extremity that combines clinical probability, laboratory testing, and imaging. Randomized trials assessing the relative efficacy and safety of pharmacologic, catheter-based, and surgical approaches to treatment (alone or in combination) have been limited to patients with deep-vein thrombosis of a lower extremity. The role of novel oral anticoagulants (e.g., direct thrombin inhibitors and factor Xa antagonists), the optimal duration of anticoagulation therapy for secondary prevention, and the role of thromboprophylaxis in patients at increased risk for deep-vein thrombosis of an upper extremity all warrant investigation.

Guidelines from Professional Societies

Consensus guidelines from the American College of Chest Physicians provide detailed recommendations for the management of deep-vein thrombosis of an upper extremity. The recommendations presented here are largely consistent with these guidelines.

Conclusions and Recommendations

In patients with acute discomfort, swelling of the arm, and risk factors such as vigorous arm exercise, an implanted central venous catheter or pacemaker, or a history of deep-vein thrombosis or cancer, the diagnosis of deep-vein thrombosis of an upper extremity is likely. Anticoagulation therapy should be promptly initiated; for acute cases, I generally recommend the administration of low-molecular-weight heparin once daily. Catheter-directed thrombolysis should be considered in cases of clinically massive deep-vein thrombosis, manifested by extensive swelling and functional impairment of recent onset, as in the patient described in the vignette. After the treatment recommended for acute cases has been completed, anticoagulation therapy is recommended for the next 3 to 6 months. Although vitamin K antagonists are generally used, low-molecular-weight heparin is preferable for this patient, given her underlying cancer.

Dr. Kucher reports receiving grant support from EKOS and honoraria from Sanofi-Aventis, GlaxoSmithKline, Boehringer Ingelheim, and EKOS and being named as coinventor of a method used to determine whether to issue an alert to consider prophylaxis in a patient at risk for venous thromboembolism (patented by Brigham and Women’s Hospital) and as coinventor of a method to detect neointimal coverage of a coronary stent (patented by SIS Medical). No other potential conflict of interest relevant to this article was reported.

Disclosure forms provided by the author are available with the full text of this article at NEJM.org.
REFERENCES

27. Mewissen MW, Seabrook GR, Meiss-

Copyright © 2011 Massachusetts Medical Society.