A better understanding of the inflammatory, procoagulant, and immunosuppressive aspects of sepsis has contributed to rational therapeutic plans from which several important themes emerge. First, rapid diagnosis (within the first 6 hours) and expeditious treatment are critical, since early, goal-directed therapy can be very effective. Second, multiple approaches are necessary in the treatment of sepsis. Third, it is important to select patients for each given therapy with great care, because the efficacy of treatment — as well as the likelihood and type of adverse results — will vary, depending on the patient.

The Spectrum of Sepsis

Nomenclature is important when it helps us understand the pathophysiology of a disease. This is true for sepsis, since nomenclature has informed the design of randomized, controlled trials and, ultimately, the prognosis of sepsis. Sepsis is defined as suspected or proven infection plus a systemic inflammatory response syndrome (e.g., fever, tachycardia, tachypnea, and leukocytosis). Severe sepsis is defined as sepsis with organ dysfunction (hypotension, hypoxemia, oliguria, metabolic acidosis, thrombocytopenia, or obtundation). Septic shock is defined as severe sepsis with hypotension, despite adequate fluid resuscitation. Septic shock and multiorgan dysfunction are the most common causes of death in patients with sepsis. The mortality rates associated with severe sepsis and septic shock are 25 to 30% and 40 to 70%, respectively.

There are approximately 750,000 cases of sepsis a year in the United States, and the frequency is increasing, given an aging population with increasing numbers of patients infected with treatment-resistant organisms, patients with compromised immune systems, and patients who undergo prolonged, high-risk surgery.

Pathophysiology

Sepsis is the culmination of complex interactions between the infecting microorganism and the host immune, inflammatory, and coagulation responses. The rationale for the use of therapeutic targets in sepsis has arisen from concepts of pathogenesis (Table 1).

Both the host responses and the characteristics of the infecting organism influence the outcome of sepsis. Sepsis with organ dysfunction occurs primarily when host responses to infection are inadequate. In addition, sepsis often progresses when the host cannot contain the primary infection, a problem most often related to characteristics of the microorganism, such as a high burden of infection and the presence of superantigens and other virulence factors, resistance to opsonization and phagocytosis, and antibiotic resistance.
INNATE IMMUNITY AND INFLAMMATION IN EARLY SEPSIS

Host defenses can be categorized according to innate and adaptive immune system responses. The innate immune system responds rapidly by means of pattern-recognition receptors (e.g., toll-like receptors [TLRs]) that interact with highly conserved molecules present in microorganisms (Fig. 1). For example, TLR-2 recognizes a peptidoglycan of gram-positive bacteria, whereas TLR-4 recognizes a lipopolysaccharide of gram-negative bacteria (Fig. 1). Binding of TLRs to epitopes on microorganisms stimulates intracellular signaling, increasing transcription of proinflammatory molecules such as tumor necrosis factor α (TNF-α) and interleukin-1β, as well as antiinflammatory cytokines such as interleukin-10.

SPECIFICITY AND AMPLIFICATION OF THE IMMUNE RESPONSE BY ADAPTIVE IMMUNITY

Microorganisms stimulate specific humoral and cell-mediated adaptive immune responses that amplify innate immunity. B cells release immunoglobulins that bind to microorganisms, facilitating their delivery by antigen-presenting cells to natural killer cells and neutrophils that can kill the microorganisms.

T-cell subgroups are modified in sepsis. Helper (CD4+) T cells can be categorized as type 1 helper (Th1) or type 2 helper (Th2) cells. Th1 cells generally secrete proinflammatory cytokines such as TNF-α and interleukin-1β, and Th2 cells secrete antiinflammatory cytokines such as interleukin-4 and interleukin-10, depending on the infecting organism, the burden of infection, and other factors.

DISTURBANCE OF PROCOAGULANT–ANTICOAGULANT BALANCE

Another important aspect of sepsis is the alteration of the procoagulant–anticoagulant balance, with an increase in procoagulant factors and a decrease in anticoagulant factors (Fig. 2). Lipopolysaccharide stimulates endothelial cells to up-regulate tis-

Table 1. Pathways and Mediators of Sepsis, Potential Treatments, and Results of Randomized, Controlled Trials (RCTs).

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Mediators</th>
<th>Treatment</th>
<th>Results of RCTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superantigens: TSST-1</td>
<td>Anti-TSST-1</td>
<td>Not evaluated</td>
<td></td>
</tr>
<tr>
<td>Streptococcal exotoxins (e.g., streptococcal pyrogenic exotoxin A)</td>
<td>Antistreptococcal exotoxins</td>
<td>Not evaluated</td>
<td></td>
</tr>
<tr>
<td>Lipopolysaccharide (endotoxin)</td>
<td>Antilipopolysaccharide</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Innate immunity</td>
<td>TLR-2, TLR-4</td>
<td>TLR agonists¹⁰ and antagonists</td>
<td>Not evaluated</td>
</tr>
<tr>
<td>Monocytes, macrophages</td>
<td>GM-CSF, interferon gamma</td>
<td>Not evaluated</td>
<td></td>
</tr>
<tr>
<td>Neutrophils</td>
<td>G-CSF†</td>
<td>Not evaluated</td>
<td></td>
</tr>
<tr>
<td>Adaptive immunity</td>
<td>B cells (plasma cells and immunoglobulins)</td>
<td>IgG</td>
<td>Not evaluated</td>
</tr>
<tr>
<td>CD4+ T cells (Th1, Th2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proinflammatory pathway</td>
<td>TFN-α</td>
<td>Anti–TNF-α¹³,¹⁴</td>
<td>Negative</td>
</tr>
<tr>
<td>Interleukin-1β</td>
<td>Interleukin-1–receptor antagonist¹⁵</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Interleukin-6</td>
<td>Interleukin-6 antagonist</td>
<td>Not evaluated</td>
<td></td>
</tr>
<tr>
<td>Prostaglandins, leukotrienes</td>
<td>Ibuprofen,¹⁶ high-dose corticosteroids¹⁷</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Bradykinin</td>
<td>Bradykinin antagonist</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Platelet-activating factor</td>
<td>Platelet-activating factor acetyl hydrolase¹⁹</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Proteases (e.g., elastase)</td>
<td>Elastase inhibitor²</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Oxidants</td>
<td>Antioxidants (e.g., N-acetylcysteine)²⁰</td>
<td>Not evaluated</td>
<td></td>
</tr>
<tr>
<td>Nitric oxide</td>
<td>Nitric oxide synthase inhibitor²³</td>
<td>Negative</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2006 Massachusetts Medical Society. All rights reserved.
Drug therapy

Table 1. (Continued.)

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Mediators</th>
<th>Treatment</th>
<th>Results of RCTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procoagulant pathway</td>
<td>Decreased protein C</td>
<td>Activated protein C</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Decreased protein S</td>
<td>Protein S</td>
<td>Not evaluated</td>
</tr>
<tr>
<td></td>
<td>Decreased antithrombin III</td>
<td>Antithrombin III</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>Decreased tissue factor–pathway inhibitor</td>
<td>Tissue factor–pathway inhibitor</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>Increased tissue factor</td>
<td>Tissue factor antagonist</td>
<td>Not evaluated</td>
</tr>
<tr>
<td></td>
<td>Increased plasminogen-activator inhibitor 1</td>
<td>Tissue plasminogen activator</td>
<td>Not evaluated</td>
</tr>
<tr>
<td>Antiinflammatory</td>
<td>Interleukin-10</td>
<td>Interleukin-10†</td>
<td>Not evaluated</td>
</tr>
<tr>
<td></td>
<td>TNF-α receptors</td>
<td>TNF-α receptors†</td>
<td>Negative</td>
</tr>
<tr>
<td>Hypoxia</td>
<td>Superoxide-producing factor 1a, vascular endothelial growth factor</td>
<td>Early, goal-directed therapy2</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supernormal oxygen delivery</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Erythropoietin26</td>
<td>Not evaluated</td>
</tr>
<tr>
<td>Immunosuppression or apoptosis</td>
<td>Lymphocyte apoptosis</td>
<td>Anticaspases27</td>
<td>Not evaluated</td>
</tr>
<tr>
<td></td>
<td>Apoptosis of intestinal epithelial cells</td>
<td>Anticaspases27</td>
<td>Not evaluated</td>
</tr>
<tr>
<td>Endocrine</td>
<td>Adrenal insufficiency</td>
<td>Corticosteroids28</td>
<td>Mixed results†</td>
</tr>
<tr>
<td></td>
<td>Vasopressor deficiency</td>
<td>Vasopressor29</td>
<td>Not evaluated</td>
</tr>
<tr>
<td></td>
<td>Hyperglycemia</td>
<td>Intensive insulin therapy20,31</td>
<td>Not evaluated</td>
</tr>
</tbody>
</table>

6 TSST denotes staphylococcal toxic shock syndrome toxin 1, GM-CSF granulocyte–macrophage colony-stimulating factor, G-CSF granulocyte colony-stimulating factor, TH1 type 1 helper T cells, and TH2 type 2 helper T cells. Organism features means components of bacteria that are toxic to the host and that are potential therapeutic targets in sepsis.

† G-CSF is effective in patients with sepsis who have profound neutropenia.22
‡ Elastase inhibitor was ineffective in a phase 2 trial involving patients with acute lung injury.
§ Interleukin-10 was ineffective in a phase 2 trial involving patients with acute lung injury.
¶ Corticosteroids had no effect on overall 28-day mortality but decreased mortality in a subgroup of patients with no response to corticotropin (see text for details). Additional trials of corticosteroids in patients with septic shock are in progress.
∥ Intensive insulin therapy decreased the mortality rate among critically ill surgical patients but has not yet been evaluated in patients with sepsis.

Tissue factor, activating coagulation. Fibrinogen is then converted to fibrin, leading to the formation of microvascular thrombi and further amplifying injury.

Anticoagulant factors (e.g., protein C, protein S, antithrombin III, and tissue factor–pathway inhibitor) modulate coagulation. Thrombin-α binds to thrombomodulin to activate protein C by binding to endothelial protein C receptor. Activated protein C inactivates factors Va and VIIIa and inhibits the synthesis of plasminogen-activator inhibitor 1. Activated protein C decreases apoptosis, adhesion of leukocytes, and cytokine production.

Sepsis lowers levels of protein C, protein S, antithrombin III, and tissue factor–pathway inhibitor. Lipopolysaccharide and TNF-α decrease the synthesis of thrombomodulin and endothelial protein C receptor, impairing the activation of protein C, and increase the synthesis of plasminogen-activator inhibitor 1, thus impairing fibrinolysis.

Key to an understanding of sepsis is the recognition that the proinflammatory and procoagulant responses can be amplified by secondary ischemia (shock) and hypoxia (lung injury) through the release of tissue factor and plasminogen-activator inhibitor 1.

Immunosuppression and apoptosis in late sepsis

Host immunosuppression has long been considered a factor in late death in patients with sepsis, since the sequelae of anergy, lymphopenia, hypothermia, and nosocomial infection all appear to be involved. When stimulated with lipopolysaccharide ex vivo, monocytes from patients with sepsis express lower amounts of proinflammatory cytokines than do monocytes from healthy subjects, possibly indicating relative immunosuppression.
Multiorgan dysfunction in sepsis may be caused, in part, by a shift to an antiinflammatory phenotype and by apoptosis of key immune, epithelial, and endothelial cells. In sepsis, activated helper T cells evolve from a Th1 phenotype, producing proinflammatory cytokines, to a Th2 phenotype, producing antiinflammatory cytokines. In addition, apoptosis of circulating and tissue lymphocytes (B cells and CD4+ T cells) contributes to immunosuppression. Apoptosis is initiated by proinflammatory cytokines, activated B and T cells, and circulating glucocorticoid levels, all of which are increased in sepsis. Increased levels of TNF-α and lipopolysaccharide during sepsis may also induce apoptosis of lung and intestinal epithelial cells.

SEPSIS AND WIDESPREAD ORGAN DYSFUNCTION

The altered signaling pathways in sepsis ultimately lead to tissue injury and multiorgan dysfunction. For example, cardiovascular dysfunction is characterized by circulatory shock and the redistribution of blood flow, with decreased vascular resistance, hypovolemia, and decreased myocardial contractility associated with increased levels of nitric oxide, TNF-α, interleukin-6, and other mediators.
Respiratory dysfunction is characterized by increased microvascular permeability, leading to acute lung injury. Renal dysfunction in sepsis, as discussed recently by Schrier and Wang, may be profound, contributing to morbidity and mortality.

TREATMENT ACCORDING TO THE EARLY AND LATER STAGES OF SEPSIS

Consensus guidelines for the management of sepsis have recently been published. The following therapeutic plan, informed by such guidelines, considers emergency care for the early stage of sepsis (0 to 6 hours) and treatment for patients in later stages who require critical care.

EARLY, GOAL-DIRECTED THERAPY

The cornerstone of emergency management of sepsis is early, goal-directed therapy, plus lung-protective ventilation, broad-spectrum antibiotics, and possibly activated protein C (Fig. 3 and Table 2). Rivers and colleagues conducted a randomized, controlled trial in which patients with severe sepsis and septic shock received early, goal-directed, protocol-guided therapy during the first 6 hours after enrollment or the usual therapy. In the group receiving early, goal-directed therapy, central venous oxygen saturation was monitored continuously with the use of a central venous catheter. The level of central venous oxygen saturation served to trigger further interventions recommended in the
Identify SIRS (on the basis of ≥2 of the following):
- Increased heart rate (>90/min)
- Increased respiratory rate (>20/min) or PaCO₂ <32 mm Hg or use of mechanical ventilation
- Increased temperature (>38°C) or decreased temperature (<36°C)
- Increased white-cell count (>12,000/mm³) or decreased white-cell count (<4000/mm³)

Identify source of infection:
- Respiratory (pneumonia, empyema)
- Abdominal (peritonitis, abscess, cholangitis)
- Skin (cellulitis, fasciitis)
- Pyelonephritis
- CNS (meningitis, brain abscess)

Assess organ function:
- CNS
- LOC, focal signs
- Renal function
- Urinary output

Measure:
- Arterial blood gas values
- Arterial lactate

Identify SIRS:
- Complete blood count
- White-cell differential

Identify source of infection:
- Culture and sensitivity, Gram’s staining of blood, sputum, urine; perhaps other fluids and CSF
- Chest radiography
- Ultrasonography, CT

Start drug therapy:
- Broad-spectrum antibiotics
- Consider APC if APACHE II score ≥25
- Failure of ≥2 organs
- Consider hydrocortisone

Assess organ function:
- Renal function
- Electrolytes, BUN, creatinine
- Hepatic function
- Bilirubin, AST, alkaline phosphatase
- Coagulation
- INR, PTT, platelets

Control the source of sepsis:
- Abscess, empyema
- Cholecystitis, cholangitis
- Urinary obstruction
- Peritonitis, bowel infarct
- Necrotizing fasciitis
- Gas gangrene

CNS = central nervous system, LOC = level of consciousness, CSF = cerebrospinal fluid, CT = computed tomography, BUN = blood urea nitrogen, AST = serum aspartate aminotransferase, INR = international normalized ratio, PTT = partial-thromboplastin time, MAP = mean arterial pressure, CVP = central venous pressure, and ScvO₂ = central venous oxygen saturation.

Copyright © 2006 Massachusetts Medical Society. All rights reserved.
<table>
<thead>
<tr>
<th>Group</th>
<th>Study</th>
<th>No. of Patients</th>
<th>Intervention Group</th>
<th>Control Group</th>
<th>Mortality Rate†</th>
<th>NNT‡</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with acute lung injury and ARDS§</td>
<td>ARDS Clinical Trials Network¹</td>
<td>861</td>
<td>Low tidal volume (6 ml/kg of ideal body weight)</td>
<td>High tidal volume (12 ml/kg of ideal body weight)</td>
<td>31</td>
<td>40</td>
<td>11</td>
</tr>
<tr>
<td>Patients with severe sepsis and septic shock</td>
<td>Rivers et al.²</td>
<td>263</td>
<td>Early, goal-directed therapy</td>
<td>Usual therapy</td>
<td>33</td>
<td>49</td>
<td>6</td>
</tr>
<tr>
<td>Patients with severe sepsis and septic shock</td>
<td>Bernard et al.³</td>
<td>1690</td>
<td>Activated protein C</td>
<td>Placebo</td>
<td>25</td>
<td>31</td>
<td>16</td>
</tr>
<tr>
<td>Patients with severe sepsis and septic shock, at increased risk for death¶</td>
<td>Bernard et al.³</td>
<td>817</td>
<td>Activated protein C</td>
<td>Placebo</td>
<td>31</td>
<td>44</td>
<td>7.7</td>
</tr>
<tr>
<td>Patients in septic shock</td>
<td>Annane et al.²⁸</td>
<td>299</td>
<td>Hydrocortisone + fludrocortisone</td>
<td>Placebo</td>
<td>55</td>
<td>61</td>
<td>NA</td>
</tr>
<tr>
<td>Patients in septic shock</td>
<td>Annane et al.²⁸</td>
<td>229</td>
<td>Hydrocortisone + fludrocortisone</td>
<td>Placebo</td>
<td>53</td>
<td>63</td>
<td>10</td>
</tr>
<tr>
<td>Critically ill surgical patients</td>
<td>Van den Berghe et al.³¹</td>
<td>1548</td>
<td>Intensive insulin (to maintain glucose level of 4.4–6.1 mmol/liter)</td>
<td>Usual insulin (to maintain glucose level of 10–11.1 mmol/liter)</td>
<td>4.6</td>
<td>8</td>
<td>29</td>
</tr>
<tr>
<td>Patients in medical ICU††</td>
<td>Van den Berghe et al.³⁰</td>
<td>1200</td>
<td>Intensive insulin (to maintain glucose level of 4.4–6.1 mmol/liter)</td>
<td>Usual insulin (to maintain glucose level of 10–11.1 mmol/liter)</td>
<td>37</td>
<td>40</td>
<td>NA</td>
</tr>
</tbody>
</table>

* The inclusion criteria were as follows: for the ARDS Clinical Trials Network, a ratio of the partial pressure of arterial oxygen to the forced inspiratory volume in 1 second of less than 300, pulmonary infiltrates, mechanical ventilation, no congestive heart failure; for Rivers et al., sepsis plus either increased lactate levels (severe sepsis) or hypotension (septic shock); for Bernard et al., severe sepsis; for Annane et al., vasopressor-dependent septic shock, mechanical ventilation, oliguria, and increased lactate levels. One study by Van den Berghe et al. involved patients in the surgical intensive care unit (ICU), 62% of whom had undergone cardiac surgery. The other study by Van den Berghe et al. involved patients in the medical ICU.

† The 28-day mortality rate is shown for all groups except those studied by Van den Berghe, for which the intensive care unit (ICU) or in-hospital mortality rate is shown.

‡ Values are the number needed to treat (NNT) to save one life.

§ An increased risk of death was defined by an Acute Physiology and Chronic Health Evaluation (APACHE) II score of at least 25.

¶ The level of evidence is I for the overall trial, but only II for the subgroup of patients with no response to the corticotropin stimulation test.

‖ The patients had no response to a corticotropin stimulation test with 250 μg of corticotropin.

†† This trial is included in the table because its results contrast with those of a similar positive trial involving patients in the surgical ICU.
protocol. Crystalloids were administered to maintain central venous pressure at 8 to 12 mm Hg. Vasopressors were added if the mean arterial pressure was less than 65 mm Hg; if central venous oxygen saturation was less than 70%, erythrocytes were transfused to maintain a hematocrit of more than 30%. Dobutamine was added if the central venous pressure, mean arterial pressure, and hematocrit were optimized yet venous oxygen saturation remained below 70%. Early, goal-directed therapy in that study decreased mortality at 28 and 60 days as well as the duration of hospitalization. Patients in the early, goal-directed therapy group received more fluids, transfusions, and dobutamine in the first 6 hours, whereas control subjects received more fluids and more control subjects received vasopressors, transfusion, and mechanical ventilation for a period of 7 to 72 hours. The mechanisms of the benefit of early, goal-directed therapy are unknown but may include reversal of tissue hypoxia and a decrease in inflammation and coagulation defects.59

VENTILATION
Once early, goal-directed therapy has been initiated, lung-protective ventilation should be considered. Acute lung injury often complicates sepsis, and lung-protective ventilation — meaning the use of relatively low tidal volumes — is thus another important aspect of management. Furthermore, lung-protective ventilation decreases mortality4 and is beneficial in septic acute lung injury.60 Excessive tidal volume and repeated opening and closing of alveoli during mechanical ventilation cause lung injury. Lung-protective mechanical ventilation, with the use of a tidal volume of 6 ml per kilogram of ideal body weight (or as low as 4 ml per kilogram if the plateau pressure exceeds 30 cm H2O) as compared with 12 ml per kilogram of ideal body weight (calculated in men as 50 + 0.91 [height in centimeters – 152.4] and in women as 45.5 + 0.91 [height in centimeters – 152.4]) has been shown to decrease the mortality rate (from 40 to 31%), to lessen organ dysfunction, and to lower levels of cytokines.61 Positive end-expiratory pressure (PEEP) decreases oxygen requirements; however, there is no significant difference in mortality between patients treated with the usual PEEP regimen of the Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network2 and those treated with higher PEEP levels.62

Patients receiving ventilation require appropriate but not excessive sedation, given the risks of prolonged ventilation and nosocomial pneumonia.63 Titrating sedation64 and interrupting sedation daily until patients are awake65 decrease the risks associated with sedation. Neuromuscular blocking agents should be avoided to reduce the risk of prolonged neuromuscular dysfunction.65

BROAD-SPECTRUM ANTIBIOTICS
Because the site of infection and responsible microorganisms are usually not known initially in a patient with sepsis, cultures should be obtained and intravenous broad-spectrum antibiotics administered expeditiously while the host immune status is ascertained. The rising prevalence of fungi, gram-positive bacteria, highly resistant gram-negative bacilli, methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococcus, and penicillin-resistant pneumococcus,66 as well as local patterns of antibiotic susceptibility, should be considered in the choice of antibiotics. Observational studies indicate that outcomes of sepsis67 and septic shock68 are worse if the causative microorganisms are not sensitive to the initial antibiotic regimen.

ACTIVATED PROTEIN C
Once goal-directed therapy, lung-protective ventilation, and antibiotic therapy have been initiated, the use of activated protein C should be considered. Therapy with activated protein C (24 μg per kilogram per minute for 96 hours) has been reported to decrease mortality5 and to ameliorate organ dysfunction68 in patients with severe sepsis. Activated protein C is approved for administration to patients with severe sepsis and an increased risk of death (as indicated by an Acute Physiology and Chronic Health Evaluation [APACHE] II score greater than or equal to 25 or dysfunction of two or more organs); such patients have had the greatest benefit — an absolute decrease in the mortality rate of 13% — from this therapy.69 However, a subsequent trial of activated protein C in patients with a low risk of death (the Administration of Drotrecogin Alfa [Activated] in Early Stage Severe Sepsis [ADDRESS] trial) was halted after an interim analysis for lack of effectiveness.70 This outcome suggests that activated protein C is not beneficial in low-risk patients. The effectiveness of activated protein C does not appear to depend on the site...
of infection or the infecting microorganism, possibly because all bacteria and fungi decrease protein C levels.71

Recent trauma or surgery (within 12 hours), active hemorrhage, concurrent therapeutic anticoagulation, thrombocytopenia (defined as a platelet countir less than 30,000 per cubic millimeter), and recent stroke were exclusion criteria for safety reasons in the Recombinant Human Activated Protein C Worldwide Evaluation in Severe Sepsis (PROWESS) trial of activated protein C.72 In that trial, there was a trend toward a higher rate of serious bleeding (defined as bleeding requiring the transfusion of 3 U of packed red cells over a period of 2 days or intracranial hemorrhage) among patients receiving activated protein C than among patients in the placebo group (3.5% vs. 2%, P=0.06), especially during infusion of the activated protein C (2.4% vs. 1%).5 Intracranial hemorrhage occurred in two patients who received activated protein C and in one who received placebo.5 In the Extended Evaluation of Recombinant Human Activated Protein C United States (ENHANCE U.S.) trial, intracranial hemorrhage occurred in 0.6% of patients given activated protein C.72 Meningitis and severe thrombocytopenia may be risk factors for intracranial hemorrhage.69

When the data are examined together, activated protein C would appear to be cost-effective for patients with severe sepsis and a high risk of death, with the cost per quality-adjusted year of life gained ranging from $24,48473 to $27,400,74 which is similar to the costs of therapies such as organ transplantation75 and drug-eluting stents.76

The mechanism of action by which activated protein C improves the clinical outcome is unknown. Activated protein C was shown to increase protein C and decrease markers of thrombin generation (e.g., D-dimer, a marker of disseminated intravascular coagulation) in one study.77 Although activated protein C prevents hypotension, it has little effect on coagulation in a human intravenous endotoxin model of sepsis,78 suggesting that modulation of coagulation may not be the primary mechanism underlying the cardiovascular benefit. Other anticoagulant therapies have included antithrombin III73 and tissue factor–pathway inhibitor,74 yet only activated protein C was effective, perhaps because of its complex antiinflammatory,79 antiapoptotic, and anticoagulant80 actions.

TREATMENT OF ANEMIA IN SEPSIS

Anemia is common in sepsis80 in part because mediators of sepsis (TNF-α and interleukin-1β) decrease the expression of the erythropoietin gene and protein.81 Although treatment with recombinant human erythropoietin decreases transfusion requirements,82 its use in randomized, controlled trials failed to increase survival. Erythropoietin takes days to weeks to induce red-cell production and thus may not be effective.

Two trials used different transfusion strategies in different stages of sepsis.2,80 Rivers et al.2 used a hematocrit of 30% as a threshold for transfusion in early sepsis as part of a 6-hour protocol. Transfusion was associated with an improved outcome. Hebert et al. compared hemoglobin values of 70 and 100 g per liter as a threshold for transfusion later in the course of critical care.80 Patients were expected to stay in the intensive care unit (ICU) for more than 3 days, and two transfusion strategies were compared during their entire ICU stay. There was no significant difference in mortality between patients who received transfusion on the basis of higher hemoglobin levels (100 to 120 g per liter) and those who did so on the basis of lower levels (70 to 90 g per liter).80

Transfusion is worthwhile if needed during the emergency stage of sepsis; Rivers et al. observed a marked decrease in mortality when transfusion was provided early.2 Hebert et al. suggest maintaining hemoglobin levels at 70 to 90 g per liter after the first 6 hours to decrease transfusion requirements.80 (Because the protocol of Rivers et al. did not extend beyond 6 hours, it is not known whether a higher transfusion threshold would be useful after 6 hours.)

CORTICOSTEROIDS IN PATIENTS WHO REQUIRE CRITICAL CARE

Although corticosteroids have been considered for the management of sepsis for decades, randomized, controlled trials suggest that an early, short course (48 hours) of high-dose corticosteroids does not improve survival in severe sepsis.82,83 Because adrenal insufficiency is being reconsidered as part of septic shock, there has been renewed interest in therapy with corticosteroids, with a focus on timing, dose, and duration. Several controversies over their use persist, however. First, the concept of adrenal insufficiency in sepsis is controversial.
Second, only two (of five)83 small randomized, controlled trials84 have shown that corticosteroid therapy (low-dose hydrocortisone) decreases the need for vasopressor support in patients with sepsis. Third, only one adequately powered trial reported a survival benefit of such treatment in patients who had no response to a corticotropin-stimulation test.28

Annane and colleagues28 evaluated oliguric patients with vasopressor-dependent septic shock who required ventilation. Patients underwent a 250-μg corticotropin-stimulation test28 and were classified as having adrenal insufficiency (no response) when the serum total cortisol level rose by less than 10 μg per deciliter.85 Patients were then randomly assigned to receive placebo or hydrocortisone plus fludrocortisone for 7 days. Corticosteroids significantly improved survival both in the overall cohort and in the prospectively defined subgroup of patients who had no response to corticotropin; however, over a 28-day period, the difference in mortality was not significant (P=0.09). Patients without a response to corticotropin who received corticosteroids had significantly lower mortality than patients who received placebo. Subgroup analyses provide inadequate evidence for a change in therapy, however, given the many examples of therapies that were purportedly successful according to subgroup analysis but were subsequently shown not to be useful in adequately powered, randomized, controlled trials.86

Observational studies87 offer no data that indicate how patients respond to corticosteroids and thus provide limited guidance as compared with randomized, controlled trials. Marik and Zaloga87 reported that 95% of patients in septic shock had serum cortisol levels under 25 μg per deciliter; another group85 have stated that during septic shock, cortisol levels of less than 15 μg per deciliter should be used as an indicator of relative adrenal insufficiency.

A recent study of serum free cortisol has added further complexity to the diagnosis of adrenal insufficiency in the critically ill.88 Serum total cortisol reflects both cortisol bound to protein (cortisol-binding globulin and albumin) and free cortisol (the physiologically active form). Patients with sepsis who have low serum albumin levels may have low serum total cortisol levels (falsely suggesting adrenal insufficiency), despite normal or even increased serum free cortisol levels (indicating truly normal cortisol levels) — a relevant point because hypoalbuminemia is common in sepsis. Indeed, Hamrahian and colleagues88 reported that critically ill patients with hypoalbuminemia had corticotropin-stimulated serum total cortisol levels that were subnormal but corticotropin-stimulated serum free cortisol levels that were higher than normal. When survivors were reassessed 6 to 10 weeks after hospital discharge, their corticotropin-stimulated serum free cortisol levels had declined to the normal range. Therefore, random and corticotropin-stimulated serum total cortisol levels must be interpreted cautiously in patients with sepsis and hypoalbuminemia. Annane and colleagues28 measured serum total cortisol to identify patients who would have a response to corticotropin. Further studies of corticotropin-induced changes in serum free cortisol levels during septic shock are needed.

Corticosteroids have also been considered for the treatment of persistent ARDS.89 Although mortality was lower among patients treated with methylprednisolone than among those given placebo in one small trial,89 patients in the placebo group crossed over to the methylprednisolone group. A randomized, placebo-controlled trial of methylprednisolone for persistent ARDS, conducted by the ARDS Network, showed no difference between groups in 60-day mortality.90

Corticosteroids can have important adverse effects in patients with sepsis, including neuromyopathy and hyperglycemia, as well as decreased numbers of lymphocytes, immunosuppression, and loss of intestinal epithelial cells through apoptosis. The immunosuppression that accompanies corticosteroid use in sepsis may lead to nosocomial infection and impaired wound healing.

Thus, the use of corticosteroids, as well as the diagnosis of adrenal insufficiency, in patients with sepsis is complex. Randomized, controlled trials indicate that early use of short-course, high-dose corticosteroids does not improve survival in severe sepsis.
tant organisms. A thorough search for the source of sepsis may require imaging (e.g., ultrasonography or computed tomography) and drainage (e.g., thoracentesis).

VASOPRESSIN
Vasopressin deficiency and down-regulation of vasopressin receptors are common in septic shock. Vasopressin dilates renal, pulmonary, cerebral, and coronary arteries. Intravenous infusion of low-dose vasopressin (0.03 to 0.04 U per minute) has been reported to increase blood pressure, urinary output, and creatinine clearance, permitting a dramatic decrease in vasopressor therapy. However, vasopressin therapy may cause intestinal ischemia, decreased cardiac output, skin necrosis, and even cardiac arrest, especially at doses greater than 0.04 U per minute. Virtually all studies of vasopressin in patients with sepsis have been small and have involved acute infusion (an infusion provided in 1 to a few hours as compared with 1 or more days). Inhibition of nitric oxide synthase with NG-methyl-L-arginine hydrochloride also decreased vasopressor use but significantly increased mortality from septic shock, suggesting that apparent short-term improvement in surrogate markers such as hemodynamics can be associated with an increased risk of death.

HYPERGLYCEMIA AND INTENSIVE INSULIN THERAPY
Hyperglycemia and insulin resistance are virtually universal in sepsis. Hyperglycemia is potentially harmful because it acts as a procoagulant, induces apoptosis, impairs neutrophil function, increases the risk of infection, impairs wound healing, and is associated with an increased risk of death. Conversely, insulin can control hyperglycemia and improve lipid levels; insulin has anti-inflammatory, anticoagulant, and antiapoptotic actions.

The appropriate target glucose range and insulin dose in patients with sepsis are unknown, because no randomized, controlled trial has been conducted to specifically study patients with sepsis. The results of a randomized, controlled trial of insulin in surgical patients suggested that intensive insulin therapy might be of benefit in sepsis. Van den Berghe and colleagues randomly assigned critically ill surgical patients to receive insulin infusion to maintain blood glucose levels at 4.4 to 6.1 mmol per liter (intensive insulin dose) or 10.0 to 11.1 mmol per liter (conventional insulin dose). The study involved intubated surgical patients (primarily those undergoing cardiac surgery), not patients with sepsis. Intensive insulin therapy decreased the rate of death in the ICU, especially among patients who remained in the ICU for at least 5 days. Intensive insulin therapy also significantly decreased the prevalence of prolonged ventilatory support, renal-replacement therapy, peripheral neuromuscular dysfunction, and bacteremia. A recent trial by the same group in medical ICU patients showed no significant difference in mortality with the use of intensive or conventional insulin therapy; intensive insulin therapy decreased the rate of death among patients who remained in the ICU for 3 or more days but increased the rate of death among patients whose stay lasted fewer than 3 days.

The mechanisms by which intensive insulin therapy benefits surgical patients are not known, but they could include the induction of euglycemia, the benefits related to increased insulin levels, or both. Intensive insulin therapy is antiinflammatory and protects endothelial and mitochondrial function.

Although intensive insulin therapy appears to be beneficial in surgical patients, the lack of efficacy in medical patients, combined with the risks involved for patients who have a short stay in the ICU, indicates clinical equipoise and the need for a randomized, controlled trial in patients with sepsis.

RENAL DYSFUNCTION AND DIALYSIS
Acute renal failure is associated with increased morbidity, mortality, and resource use in patients with sepsis. Continuous renal-replacement therapy decreases the incidence of adverse biomarkers, but there is little evidence that it changes outcomes. Low-dose dopamine (2 to 4 μg per kilogram per minute) neither decreases the need for renal support nor improves survival and, consequently, is not recommended. Lactic acidosis is a common complication of septic shock; however, sodium bicarbonate improves neither hemodynamics nor the response to vasopressor medications.

SUPPORT AND GENERAL CARE
The goal of cardiovascular support should be adequate perfusion, though whether it is beneficial to try to maintain central venous oxygen saturation

Copyright © 2006 Massachusetts Medical Society. All rights reserved.
above 70% after the first 6 hours is unknown. Respiratory support requires continued application of a tidal volume of 6 ml per kilogram and a well-defined weaning protocol (e.g., that of the ARDS Clinical Trials Network). Because sepsis increases the risk of deep venous thrombosis, prophylactic heparin — which can be added to activated protein C — is recommended for patients who do not have active bleeding or coagulopathy.

Enteral nutrition is important because it is generally safer and more effective than total parenteral nutrition. However, total parenteral nutrition may be required in patients who have had abdominal sepsis, surgery, or trauma. For patients with sepsis who are receiving mechanical ventilation, stress ulcer prophylaxis with the use of histamine H2-receptor antagonists may decrease the risk of gastrointestinal hemorrhage. Proton-pump inhibitors may be effective but have not been fully evaluated for stress ulcer prophylaxis.

Use of sedation, neuromuscular-blocking agents, and corticosteroids should be minimized because they can exacerbate the septic encephalopathy, polyneuropathy, and myopathy of sepsis. The use of immune support benefits specific subgroups of patients with sepsis (e.g., patients with neutropenia benefit from treatment with granulocyte colony-stimulating factor). The risk of nosocomial infection in patients with sepsis may be decreased by using narrow-spectrum antibiotics, weaning patients from ventilation, avoiding immunosuppression, and removing catheters.

INEFFECTIVE THERAPIES

Several types of therapy have proven ineffective. Antilipopolysaccharide therapy was ineffective, perhaps because it was applied late (after the lipopolysaccharide peak in sepsis) or because the antibodies used lacked the ability to neutralize lipopolysaccharide. Numerous therapies that block proinflammatory cytokines have failed, perhaps because the approach was narrowly focused, pathways are redundant, or cytokines are critical to host defense and their blockade is excessively immunosuppressive. Ibuprofen, platelet-activating factor acetylhydrolase, bradykinin antagonists, and other therapies have not improved survival among patients with sepsis.

POTENTIAL NEW THERAPIES

Superantigens and mannose are bacterial products that may be potential therapeutic targets (Table 1). Inhibition of tissue factor, a proximal target, might mitigate excessive procoagulant activity. Strategies to boost immunity could improve the outcome of sepsis when applied early in sepsis if measures of immune competence indicate impaired immunity or when applied late in sepsis. Interferon gamma improved macrophage function and increased survival in one study of sepsis. Inhibition of apoptosis (e.g., with anticaspases) improved survival in an animal model of sepsis. Lipid emulsion (which binds and neutralizes lipopolysaccharide) is being evaluated in a phase 3 trial; lipids may modulate innate immunity by inhibiting lipopolysaccharide.

SUMMARY

Optimal management of sepsis requires early, goal-directed therapy; lung-protective ventilation; antibiotics; and possibly activated protein C. The use of corticosteroids, vasopressin, and intensive insulin therapy requires further study. Later in the course of sepsis, appropriate management necessitates organ support and prevention of nosocomial infection. Studies focused on novel targets, mechanisms of action, and combination therapy may improve current treatment.

Supported by the University of British Columbia. No potential conflict of interest relevant to this article was reported.

I am indebted to my colleagues in the ICU and the Division of Critical Care Medicine (especially Dr. Keith Walley) of St. Paul’s Hospital for their care of patients, education, and assistance in my critical care research; to Dr. Barry Kassen for his review of the manuscript; and to the late Diane Minshall for her assistance with Figures 1 and 2.

REFERENCES

riaemia and septic shock with HA-1A human monoclonal antibody against endotoxin: a randomized, double-blind, placebo-controlled trial. N Engl J Med 1991;324:429-
36.
10. Modlin RL, Brightbill HD, Godowski PJ. The toll of innate immunity on micro-
13. Abraham E, Laterre PF, Garbino J, et al. Lenoterol (55 tumor necrosis factor receptor fusion protein) in severe sepsis and early septic shock: a randomized, double-blind, placebo-controlled, multi-
nal antibody to human tumor necrosis factor alpha in patients with sepsis syn-
15. Fisher CJ Jr, Dhainaut JF, Opal SM, et al. Recombinant human interleukin 1 re-
ceptor antagonist in the treatment of pa-
tients with sepsis syndrome: results from a randomized, double-blind, placebo-
16. Bernard GR, Wheeler AP, Russell JA, et al. The effects of lipoproten on the physi-
ology and survival of patients with sep-
17. Bone RC, Fisher CJ Jr, Llemmer TP, Slotman GJ, Metz CA, Balk RA. A con-
trolled clinical trial of high-dose methyl-
18. Fein AM, Bernard GR, Criner GJ, et al. Treatment of severe systemic inflamma-
tory response syndrome and sepsis with a novel bradykinin antagonist, dehbitant (CP-0127): results of a randomized, dou-
ble-blind, placebo-controlled trial. JAMA 1997;277:4827.
center, randomized, double-blind, placebo-
ine and procoenzyme in ARDS. Chest 1997;112:164-72.
sis: a randomized controlled trial. JAMA 2003;290:238-47.
nant tissue factor pathway inhibitor in severe sepsis: a randomized controlled trial. JAMA 2003;290:238-47.
26. Hotchkiss RS, Chang KC, Swanson PE, et al. Caspase inhibitors improve sur-
vival in sepsis: a critical role of the lym-
28. Patel BM, Chitncock DR, Russell JA, Walley KR. Beneficial effects of short-
31. Van den Berghe G, Wouters P, Week-
32. Brown MA, Jones WK, NF-kappaB ac-
tion in sepsis: the innate immune system and the heart. Front Biosci 2004;9:1201-
17.
33. Abbas AK, Murphy KM, Shier A. Func-
35. Walley KR. Beneficial effects of short-
36. Fulcher CA, Gardiner JE, Griffin JH, Zimmerman TS. Proteolytic inactivation of human factor VIII procoagulant pro-
tein by activated human protein C and its analogy with factor V. Blood 1984;63:486-
9.
38. Joyce DE, Gelbert L, Ciaccia A, De-
Hoff B, Grinnell BW. Gene expression profile of antithrombotic protein C defines new mechanisms modulating inflamma-
39. Grinnell BW, Hermann RB, Yan SB. Human protein C inhibits selectin-medi-
ated cell adhesion: role of unique fucosyl-
induced pulmonary vascular injury by in-
hbiting cytokine production. Am J Physi-
41. Greasey AA, Reinhart K. Tissue factor pathway inhibitor activity in severe sep-
s. Crit Care Med 2001;29:Suppl 7:S298-
S129.
42. Liaw PC, Esmon CT, Kahanmouki K, et al. Patients with severe sepsis vary mark-
edly in their ability to generate activated protein C. Blood 2004;104:3098-64.
45. Hotchkiss RS, Tinsley KW, Swanson PE, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immu-
bol 2001;166:6952-63.
46. Oberholzer A, Oberholzer C, Moldaw-
47. Ertel W, Kremer JP, Kenney J, et al. Downregulation of proinflammatory cy-
tory cytokine profile in patients with se-

50. Ayala A, Herdon CD, Lehman DL, De-Maso CM, Ayala CA, Chaudry IH. The in-

51. Crouser ED, Julian MW, Weinstein DM, Fahy RJ, Bauer JA. Endotoxin-induced ileal mucosal injury and nitric oxide dysregu-
lation are temporally dissociated. Am J Respir Crit Care Med 2000;161:1705-12.

52. Herbertson MJ, Werner HA, Walley KR. Nitric oxide synthase inhibition par-

53. Herbertson MJ, Werner HA, Goddard CM, et al. Anti-tumor necrosis factor-alpha prevents decreased ventricular contrac-

54. Cain BS, Meldrum DR, Dinarello CA, et al. Tumor necrosis factor-alpha and its du-
ter repressor-1beta synergistically depress hu-

55. Schrier RW, Wang W. Acute renal fail-
ure and sepsis. N Engl J Med 2004;351:139-
69.

56. Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and sep-
70.]

57. Ibrahim IH, Sherman G, Ward S, Fra-
er VJ, Kollek MH. The influence of inad-
equate antimicrobial treatment of bacterial

58. Leiboivci L, Shraga I, Drucker M, Kö-

59. Kietzmann T, Roth U, Jungemann K. Induction of the plasminogen activator inhibitor-1 gene expression by mild hy-
poxia via a hypoxia response element bind-
ing the hypoxia-inducible factor-1 in rat hepatocytes. Blood 1999;94:4177-85.

60. Eiser MD, Thompson T, Hudson LD, et al. Efficacy of low tidal volume ventila-

61. Ranieri VM, Suter PM, Tortorella C, et al. Effect of mechanical ventilation on in-
flammatory mediators in patients with acute respiratory distress syndrome: a ran-
domized controlled trial. JAMA 1999;282: 54-61.

62. Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-

63. Kress JP, Pohlman AS, O’Connor MF, Hall JB. Daily interruption of sedative in-

65. Segredo V, Caldwell JE, Matthay MA, Sharma ML, Gruene KD, Miller RD. Per-
sistent paralysis in critically ill patients after long-term administration of vecuroniu-

66. National Nosocomial Infections Sur-
veillance (NNIS) system report, data sum-
mary from January 1992–April 2000, is-

67. Harbath S, Garbino J, Pugin J, Ro-
mund JA, Lew D, Pittet D. Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immuno-

69. Ely EW, Latzer PE, Ang DC, et al. Drotrecogin alfa (activated) administration ac-
tross clinically important subgroups of patients with severe sepsis. Crit Care Med 2003;31:129-1.

71. Opal SM, Garber GE, LaRosa SP, et al. Systemic host responses in severe sepsis analyzed by causative microorganism and treatment effects of drotrecogin alfa (activ-

72. Bernard GR, Margolis BD, Shanes HM, et al. Extended Evaluation of Recom-
bimbi Human Activated Protein C United States Trial (ENHANCE US): a single-arm, phase 3B, multicenter study of drotreco-

74. Angus DC, Linde-Zwirble WT, Cler-
mont G, et al. Cost-effectiveness of drotrecogin alfa (activated) in the treat-

75. Whiting JF, Kibber B, Kalo Z, Keown P, Roels L, Kjerulf M. Cost-effectiveness of organ donation: evaluating investment into donor action and other donor initia-

76. Weintraub WS. Economics of hepar-

77. Dhainaut JF, Yan SB, Margolis BD, et al. Drotrecogin alfa (activated) (recombi-

78. Derhaschig N, Reiter R, Knobl P, Baumgartner M, Keen P, Ilhma B. Recom-
bimbi Human activated protein C (rhAPC; drotrecogin alfa activated)) has minimal effect on markers of coagulation, fibrino-

81. Jelkmann W. Proinflammatory cyto-
kines lowering erythropoietin produc-

82. Sprung CL, Caralissi PW, Marcial EH, et al. The effects of high-dose corticoste-
roids in patients with septic shock: a pro-

83. Annane D, Bellissant E, Bollaert PE, Briegel J, Keh D, Kipfer Y. Corticosteroids for severe sepsis and septic shock: a system-

85. Cooper MS, Stewart PM. Corticoste-

86. Assmann SF, Pocock SJ, Enos LE, Kas-
ten LE. Subgroup analysis and other (mis)uses of baseline data in clinical tri-

87. Mark PE, Zaloga GP. Adrenal insuffi-

89. Meduri GU, Headley AS, Golden E, et